RHEOLOGICAL BEHAVIOR OF A DILUTE SUSPENSION OF SPHERICAL PARTICLES
IN A NON-NEWTONIAN LIQUID

L. M. Shmakova Unc 532.135

To establish the rheological behavior of the media under consideration we investigate
the perturbations introduced into the flow of a Reiner—Rivlin liquid with a parallel velocity
gradient (uniaxial stretching) by a spherical drop of a Newtonian liquid. We obtain the fol-
lowing boundary-value problem:

Tijp =0y vy, =05 1)

Ty = — pbyy + WEy 4 tsEinEay; 2)

Vo= =2, Vy=—Fy V=05 DP=Dpo as I'->oo; 3
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Relations (1) are the dynamical equations in the stresses in the Stokes approximation and the
equation of continuity; relation (2) is the rheological equation of state of a dispersion
medium; Eqs. (3) are the boundary conditions at infinity (unperturbed flow — uniaxial stretch-
ing); and Eqs. (4) are the boundary conditions at the surface of a particle (impenetrability
of the surface, continuity of the tangential component of the velocity and Trgy at this sur-
face). Here Tij is the stress tensor, vi is the velocity, p is the pressure, &jj is the
Kronecker symbol, Eij is twice the rate of strain tensor, u, and us are, respectively, the
viscosity and cross viscosity of the dispersion medium, q is the rate of stretching, p, is
the pressure in the unperturbed flow, x, y, z and r, 6, ¢ are, respectively, Cartesian and
spherical coordinate systems with the origin at the center of the particle, a is the radius
of the particle, and an asterisk indicates that the quantity is taken from the solution of
the problem of motion of the liquid inside the particle, i.e., simultaneously with the
boundary-value problem (1)-(4), it is necessary to solve the problem of the motion of a New—
tonian liquid inside the particle produced by the flow of the dispersion medium under study
and to match the solutions at the surface of separation of the internal and external problems.

Suppose 1, and Ws are constants and the dimensionless parameter € ='(u3/u1)q << 1. This
restricts the class of dispersion systems considered, but makes it possible to linearize the
boundary-value problem (1)-(4). The steady flow of a Reiner—Rivlin liquid past a sphere under
the above assumptions was studied in [1, 2]. Kato et al. [3] cite a number of polymer solu-
tions which satisfy the equation of state (2) for contant p,; and ps.

Introducing the stream function Y related to vy and vg by the equations

1 A 1 oy

Ur= " 1fging 90 °' Y9 rsino or’

and going over to. dimensionless quantities with the scales r ~ a, vi ~ aq, Eij ~ 4, Tij ~
Hiq, P ~ Po» and ¥ ~ a®q, we seek the solution of the boundary-value problem (1)-(4) in the
form of asymptotic expansions in powers of a small parameter,

‘l’=\l’o.+3‘l’1+821pz+---z
pP=pot+ep+ept+.. ...

(5)

The symbol indicating the dimensionless character of the quantities in (5) is omitted from
now on.

In the zero approximation we obtain a boundary-value problem corresponding to the flow
(3) of a Newtonian liquid with a dynamic viscosity p. past a spherical drop. This problem
has the solution-
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where A = (2 + 50)/4(1 + 0); B =—30/4(1 + 0); 0 = u,/ma; u, is the dynamic viscosity of the
material of the particle.

In the first approximation for the external problem we obtain the equations
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Eliminating p. in (8) and substltutlng E calculated from (6), we obtain the following

adjoint problem:

[arﬂf"‘ sind o (suixe 6%)]2 = (if;f._!_ 1920AB)S 279 08 6 — (72(:_7AZ+ 216?BAB) i c0s 6; 9
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qr:ari(-ria-%p%) r ;r( :2 061‘;1) E(reEfpoq),sinﬂ at =1, (12)

We seek the solution of problem (9)-(12) in the form
P; = f, (r)sin?0 cos 6 + fo () sin® 6 cos 6,
P = f1(r)sin?0cos 6 + {5 (r) sin* 0 cos 6.

We obta:Ln the following system of ordinary differential equations for f,(r), f,(r), f (r),"
and £* 2 () .
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Solving Eqs. (13) and (14) with boundary conditions rewritten for f,(r), f,(r), f*(r),
and f*(r), from (11) and (12) we find

¢1=[C+_:?Cl - _|_4-‘-4§]s1n26 cose-l-[ 2—1- ]3 -I— 6;43]51n46 cos 0, @a5)

where

— 1040 (A —3B) — 1642 I 60A4B - 158 ~+-20B2 |

¢= 5(1+ o) '

the C{ are known functions of o.

Solving Eqs. (8) with the boundary condition p, = 0 as ¥ + =, we obtain

4(5A—C)—6 (174 —C)sin? 0 -} 904 sin 0
1= 7 ’ (’161
where the terms retained ensure the determination of the rheological. characteristics of the
suspension with an accuracy to quantities of the order of the volume concentration of the

suspended particles.
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By using Egs. (6), (7), (15), and (16), we determine the dissipation of mechanical
energy in a volume of the dispersion medium bounded by the surface of a particle and a spher-
ical surface 0o of radius R >> r in terms of the forces applied to this surface,

W= [ (P, + Pyove) do. an
o . .
Here and below all quantities are written in dimensionless form.

The dissipation of mechanical energy in a selected element of the medium divided by its
volume T, determined with an accuracy to quantities of the order of the volume . concentration
of the suspended particles, has the form

W=—= 3u1q2(1 + —i—AdJ) + 3ugg® [1 - -2—-(A —0) ‘D]v 18)

where ¢ is the volume concentration of the suspended particles.

Since the suspension under consideration is dilute, the suspended particles are spheri-
cal, and for e << 1 the properties of the dispersion medium are little different from those
of a Newtonian liquid (or the rate of strain is small), we assume that the rheological equa-
tion of state of the suspension has the form

Ty = — pdij + WiefEiy + Woef EinEnir (19)

where Uieof and Uzef, the viscosity and cross viscosity of the suspension, are to be deter-
mined.

Then W can be found, in terms of the internal forces in the following way:
W=+T,F,
2 i

where-fij and Eij are, respectively, the stress tensor (19) and twice the rate of strain
tensor averaged over a selected volume element of the medium under study.

The components of the tensor i&j, determined with the same accuracy as assumed in (18),

are
— 44 4C
E, = .__—5‘ —Xdr = — gvx—dc—-—q(l—-s—@—?%:—qd))v
=2q(1___b__q)_[£g_ﬂq¢)) E; ;=0 for j=£j.
Hence
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= Bueg* (1 — £ 0 — 52 R q0) + Buaerg? (1 — Z2 @),

Comparing (18) and (20), we find H,ef and Usef, and the rheological equation of state of
the suspension (19) takes the form

Ti.f = — paii + l"’l(1 + ZACD)EU + !»113['1 +2(A + C)(D ]EikEki' (21)

In the limit as o =+ =, which corresponds to a dilute suspemsion of rigid spherical particles,
we obtain

Tyj = — p8y + (1l 4 2.5Q)E;; + us(l — 15Q)E By, 22)
In the limit as ¢ + 0, we obtain the rheological equation of state of a dilute suspension of
gas bubbles,
Ty = — pdy + m(l + D)E;; + ps(l — 0.6D)E 1 E ;- (23)
Thus, a dilute suspension of rigid, liquid, or gaseous spherical particles with a non-
Newtonian dispersion medium which is a generalized Reiner—Rivlin liquid with constant vis-

cosity and cross viscosity for € << 1 (a dispersion medium slightly different from a Newtoniar
liquid or a small rate of strain) is itself a Reiner—Rivlin liquid with a viscosity and cross
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viscosity depending on the volume concentration of the suspended particles and the ratio of
the viscosity of the particle material to that of the dispersion medium.

Since the situation considered in this article is very little different from the Einstein
case, the coefficient 15 in Eq. (22) holds for ¢ < 0.02. The noticeable decrease of cross
viscosity resulting from the addition of a dispersed phase to a viscoelastic liquid is well
known and used in practice.

For ps = 0 the equations of state (21)-(23) give the classical results of the mechanics
of dilute suspensions of spherical particles with a dispersion medlum which is a Newtonian
liquid.

It follows from the equations of state obtained that the addition of a dispersed phase
with a small concentration to a Reiner—Rivlin liquid leads to a decrease in the cross yiscos-—
ity, i.e., to a decrease in its non-Newtonian properties. Actually, usef can.be written in
the form

Bgef = Pyl — v(o)®1,

where v(g) lies between 0.6 and 15. The maximum value of v corresponds to solid particles
and the minimum value to gas bubbles.
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TURBULENT FLOW OF CONCENTRATED UNSTABLE EMULSIONS IN PIPES

V. F. Medvedev UDC 532.517.4:532.695

Unstable emulsions occur in a number of important technological processes, such as
liquid extraction in oil refining and intrapipe demulsification in petroleum production. The
hydrodynamic behavior of unstable emulsions differs from that of single-phase liquids in the
damping of turbulent fluctuations of the dispersion medium By drops of the dispersed phase
which are larger than the internal scale of turbulent fluctuations [1]. The turbulent flow
of dilute unstable emulsions is described in [2].

When the content B of the dispersed phase of the emulsion lies in the range of 0.524 <X
B <<0.741 (for B = 0.741 the phases of an unstable emulsion are inverted) the drops are
closely packed, and shearing the emulsion requires an additional stress to deform them [3]:

To = (0.1958 — 0.102)0/d, 0,524 < B < 0,741

where o is the interfacial tensioﬁ, and d is the diameter of the drops of the emulsion. Thus,
a concentrated unstable emulsion conforms to the Bingham model [4], and the equation of motion
of concentrated emulsions in a pipe can be written in the form

(Be T BeQduldy =1 — 75, T<T< T
duldy =0, 1<

where u and T are, respectively, the velocity and shear stress at a distance y from the wall,
Tw 1s the wall shear stress, and pe and pge are the dynamic and eddy viscosities of the emul-
sion. It is shown in [5] that the dynamic viscosity of concentrated unstable emulsions can
be determined in accordance with [6] as ue = u,(1 — B)~2%*>, where u, is the dynamic viscosity
of the dispersion medium. ‘
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