
RHEOLOGICAL BEHAVIOR OF A DILUTE SUSPENSION OF SPHERICAL PARTICLES 

IN A NON-NEWTONIAN LIQUID 

L. M. Shmakova UDC 532.135 

To establish the rheological behavior of the media under consideration we investigate 
the perturbations introduced into the flow of a Reiner--Rivlin liquid with a parallel velocity 
gradient (uniaxial stretching) by a spherical drop of a Newtonian liquid. We oNtain the fol- 
lowing boundary-value problem: 

T~j,j = 0, v~,~ ---- 0; 61) 

q q 
v ~ = - - . . . ~ . x ,  v y = - - T y  , v ~ = q z ,  p = p ~  as r - -+oo;  (3)  

4q * 

v r==0,  vo----v0, T r 0 =  Tr0 at r = a .  (4]l 

Relations 61) are the dynamical equations in the stresses in the Stokes appr.oximation and the 
equation of continuity; relation (2) is the rheological equation of state of a dispersion 
medium; Eqs. (3) are the boundary conditions at infinity (unperturbed flow- uniaxial stretch- 
ing); and Eqs. (4) are the boundary conditions at the surface of a particle (impenetrability 
of the surface, continuity of the tangential component of the velocity and Tr0 at this sur- 
face). Here Tij is the stress tensor, vf is the velocity, p is the pressure, ~iJ is the 
Kroneeker symbol, Eij is twice the rate of strain tensor, p~ and ~3 are, respectively, the 
viscosity and cross viscosity of the dispersion medium, q is the rate of stretching, p= is 
the pressure in the unperturbed flow, x, y, z and r, 0, ~ are, respectively, Cartesian and 
spherical coordinate systems with the origin at the center of the particle, a is the radius 
of the particle, and an asterisk indicates that the quantity is taken from the solution of 
the problem of motion of the liquid inside the particle, i.e., simultaneously with the 
boundary-value problem (1)-r it is necessary to solve the problem of the motion of a New- 
tonian liquid inside the particle produced by the flow of the dispersion medium under study 
and to match the solutions at the surface of separation of the internal and external problems. 

i 

Suppose px and ~s are constants and the dimensionless parameter e ffi (~/px)q << i. This 
restricts the class of dispersion systems considered, but makes it possible to linearize the 
boundary-value problem (1)-(4). The steady flow of a Reiner-Rivlin liquidpast a sphere undez 
the above assumptions was studied in [i, 2]. Kato et al. [3] cite a number of polymer solu- 
tions which satisfy the equation of state r for contant ~x and pa. 

Introducing the stream function ~ related to v r an~ v 0 by the equations 

Pr---- r 2sin~ ~ - t  V 0 ~  rs inO Or " 

and  g o i n g  o v e r  to .  d i m e n s i o n l e s s  q u a n t i t i e s  w i t h  t h e  s c a l e s  r ~ a ,  v i  ~ a q ,  E i j  ~ q ,  T i j  " 
~ l q ,  P ~ P~,  a n d  r ~ a 3 q ,  we s e e k  t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 1 ) - ( 4 )  i n  t h e  
f o r m  o f  a s y m p t o t i c  e x p a n s i o n s  i n  p o w e r s  o f  a s m a l l  p a r a m e t e r ,  

~b = % + 8~h + s ~  + -  �9 � 9  ( 5 )  

P = Po q-  e p l  Jr e2P~ -t- �9 . �9 -~  

The symbol indicating the dimensionless character of the quantities in (5) is omitted from 
now on. 

In the zero approximation we obtain a boundary-value problem corresponding to the flow 
(3) of a Newtonian liquid with a dynamic viscosity p~ past a spherical drop. This problem 
has the solution 
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4o = (--  # /2  + A + B / # )  s in  g 0.  cos 0-: (6) 

Po = i - -  (2A/r3)(2 - -  3 s in  z O), ( 7 )  

w h e r e  A = (2 + 5 ~ ) / 4 ( 1  + ~ ) ;  B = ~ - - 3 ~ / 4 ( 1  + ~ ) ;  ~ = l J , / l J z ;  l J ,  i s  t h e  dyn~T,~c  v i s c o s i t y  o f  t h e  
material of the particle. 

In the first approximation for the external problem we obtain the equations 

Op OE~ ) i 0E~ ) i (2E~, __v(i} i) ~(i, 
or "W-~ + ~  - ~ + ' 7 -  

O r,~o)~ _ v(o)2~ 1 0 fv~o)v(o)'t _ 1 ~(o)~ v(o~ �9 v(o)2 ~(o)2 E(o)v(o) O), ( 8 )  
+ ~ ' r , ~ §  -~ ~ o  ~ r OO ~ o ~ 1 . - * -  " 7 - ( 2 E ~  + ~ e  - -  ~oo -- ~ -- ~o~r 

Op~o.._O = r ~ O r  + ","~--" + 3E(r~) + , - -  E e l )  ctg 0 - - ,  -07-r t ~ r ~  ~r162 "1" 

O (~(0)2 w(0)2't ~v(0)~(0) __ (~(0)2 w(0)2 (0)2 
+ ~ -  ~%0 + ~oo -, - -  o ~ 0  ~r  ~- , ~ o  + ~oo) - -  Er ) c t g  0. 

(o) calculated from (6) we obtain the following Eliminating p~ in (8) and substituting Eij 
adj oint problem: 

[ 0_~,f._~_ s in0  O { t _ _ ~  ~0~]s  / 576A2 -V t920AB~ sing 0 cos 0 - -  / 720A2 ' 2t60AB\ . 4 
" W -  ~ ksin 0 00 ]] *x = t"-Ti;-~. 7 }  _ ~ r '  -t- 7 )  s i n  0 

[ ~ . s i n 0  O t - t - - 7 -  " 3 - 6 - ( ~  0 \ i s . ,  �9 ~)j v, = o; 

O~ * 0r 0r 
�9 i < 0 ( r  s) ,  ~ < 0 ( r )  as r - + o o ,  * x = 0 ,  r  0, [Or = 0"-7-; 

We seek the solution of problem (9)-(12) in the form 

41 = l l  (r) s i n  g 0 cos 0 + ]9 (r) s i n  4 0 cos 0, 

�9 * " 2 * 4 4 i  = ] i  (r) s i n  0 cos 0 + ]2 (r) s in  O cos 0. 

We obtain the following system of ordinary differential equations for f1~), f=(r), 
and f~(r) : 

cos 0; O) 

( lo) 

(11) 

(12) 

/ I v  t2 . 24 t6 - 3 2 . ,  160 576A 2 

/ I v  40 ,, 80 ~, 280.  720A=' 2i60AB 
- -  ~ f 2  -F ~ 1 2  -~- "~ - f 2=  r 7 r a ; 

t2 . . .  24 - t6 .,, 82 /7  t6o.. / ; i v _  ~ 1 1  + 7 f f + - ~ ' / 2  --77 ---~-T2 

i;}~ 4o . . -  so . . ,  28o,. 
- -  -T., 12 -~--~-12 + - ~ ' I 2 " - - 0 .  

_ _  + t920AB 
r ~ ,  

= 0 ,  

(13) 

614) 

Solving Eqs. 
and f~a(r), from (ii) and (12) we find 

= r--T~ ~ -{- s in  2 0 .  cos 0 + 7 - '  C~ + ~ -p -~-  a S in  4 O cos 0, 

where 

C = - -  10An (A - -  3B) - -  16A 2 + 60AB ~ 15B + 20B ~ . 
5 (i + a) 

(13) and (14) with boundary conditions rewritten for f1~), fl~r), f~), 

(is)_ 

the C i are known functions of o. 

Solving Eqs. (8) with the boundary condition Pl = O as r + ~, we obtain 

4 (5A - -  C) - -  6 (i7A - -  C) sin 2 O + 90A sin 4 0 ( 1 6 )  
191 = r~ , 

where the terms retained ensure the determination of the rheological charactarCstics of the 
suspension with an accuracy to quantities of the order of the volume concentration of the 
suspended particles. 
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By using Eqs. (6), (7), (15), and (16), we determine the dissipation of mechanical 
energy in a volume of the dispersion medium bounded by the surface of a particle and a spher- 
ical surface ~o of radius R >> r in terms of the forces applied to this surface, 

W --- S (Prrvr + Pr0Vo) d(L (17) 
0% 

Here and below all quantities are written in dimensionless form. 

The dissipation of mechanical energy in a selected element of the medium divided by its 
volume T, determined with an accuracy to quantities of the order of the volume concentration 
of the suspended particles, has the form 

where r is the volume concentration of the suspended particles. 

Since the suspension under consideration is dilute, the suspended particles are spheri- 
cal, and for e << I the properties of the dispersion medium are little different from those 
of a Newtonian liquid (or the rate of strain is small), we assume that the rheologieal equa- 
tion of state of the suspension has the form 

TU = -- p6i: + ~xefEi; + ~taef E:~E~h (19-I 

where ~xef and ~3ef, the viscosity and cross viscosity of the suspension, are to be deter- 
mined. 

Then W can be found, in terms of the internal forces in the following way: 

i 
W = T ToEu' 

where Tij and Eij are, respectively, the stress tensor (19) and twice the rate of strain 
tensor averaged over a selected volume element of the medium under study. 

The components of the tensor Eij, determined with the same accuracy as assumed in (18~, 
are 

= x J a z  d~=-7--  ~ - 7 - d e = - - q  i - - T  ~ 5 ~x qq~' 
�9 g (j 

5 ~* q(D ; Ei1= 0 for ~@]. 

Hence 

1 1 
W = "7 P~lefEuE~i + -f- V~efEmEhlEiJ = 

5 ~ qd#) + 3~t3efq 3 -- T 
(12o) 

Comparing (18) and (20), we find ~xef and ~aef, and the rheological equation of state of 
the suspension (19) takes the form 

T~] = - -  p ~ ]  -'{-- ~ l ( i  + 2A~)Eiy + ~a[i + 2 ( A  + C)~]E~Eh;. (21) 

In the limit as ~ + ~, which corresponds to a dilute suspension of rigid spherical particles, 
we obtain 

Tu = --  pSu + '  ~1(i -5 2.5~)E~t + ~a(l - -  15~)E:~Ekl. (22) 

In the limit as ~ § 0, we obtain the rheological equation of state of a dilute suspension of 
gas bubbles, 

Tu = -- pSu + 91(I + ~)Eu + ~3(I -- 0.6~)E:kE~;. 623) 

Thus, a dilute suspension of rigid, liquid, or gaseous spherical particles with a non- 
Newtonian dispersion medium which is a generalized Reiner--Rivlin liquid with constant vis- 
cosity and cross viscosity for e << 1 (a dispersion medium slightly different from a Newtoniat 
liquid or a small rate of strain) is itself aRelner-Rivlln liquid with a viscosity and cross 
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viscosity depending on the volume concentration of the suspended particles and the ratio of 
the viscosity of the particle material to that of the dispersion medium. 

Since the situation considered in this article is very little different from the Einstein 
case, the coefficient 15 in Eq. (22) holds for ~ < 0.02. The noticeable decrease of cross 
viscosity resulting from the addition of a dispersed phase to a viscoelastic liquid is well 
known and used in practice. 

For ~3 = 0 the equations of state (21)-(23) give the classical results of the mechanics 
of dilute suspensions of spherical particles with a dispersion medium which is a Newtonian 
liquid. 

It follows from the equations of state obtained that the addition of a dispersed phase 
with a small concentration to a Reiner-:Rivlin liquid leads to a decrease in the cross viscos- 
ity, i.e., to a decrease in its non-Newtonian properties. Actually, ~3ef can be written in 
the form 

~aef = ~[1 -- v(g)~], 

where ~(~) lies between 0.6 and 15. The maximum value of ~ corresponds to solid particles 
and the minimum value to gas bubbles. 
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TURBULENT FLOW OF CONCENTRATED UNSTABLE EMULSIONS IN PIPES 

V. F. Medvedev UDC 532.517.4:532.695 

Unstable emulsions occur in a number of important technological processes, such as 
liquid extraction in oil refining and intrapipe demulsification in petroleum production. The 
hydrodynamic behavior of unstable emulsions differs from that of single-phase liquids in the 
damping of turbulent fluctuations of the dispersion medium By drops of the dispersed phase 
which are larger than the internal scale of turbulent fluctuations [i~. The turbulent flow 
of dilute unstable emulsions is described in [2]. 

When the content ~ of the dispersed phase of the emulsion lies in the range of 0.5244 
8 40.741 (for 8 = 0.741 the phases of an unstable emulsion are inverted) the drops are 
closely packed, and shearing the emulsion requires an additional stress to deform them [3]: 

% = (0.t95 ~ -- 0A02)~/d, 0,524 ~ ~ ~ 0.741 

where a i s  the  i n t e r f a c i a l  t e n s i o n ,  and d i s  the  d iamete r  of the  drops of  the  emuls ion.  Thus, 
a c o n c e n t r a t e d  u n s t a b l e  emuls ion conforms to  the  Bingham model [4] ,  and the  equa t i on  of mot ion 
of concentrated emulsions in a pipe can be written in the form 

(~e + ~e~du/dy = T - -  To, % < ~ < r w" Cl~ 
du/dy = 0 ,  ~ ~ 

where u and T are, respectively, the velocity and shear stress at a distance y from the wall, 
T w is the wall shear stress, and ~e and ~ee are the dynamic and eddy viscosities of the emul- 
sion. It is shown in [5] that the dynamic viscosity of concentrated unstable emulsions can 
be determined in accordance with [6] as ~e = ~(i -- 8)-2.~, where ~x is the dynamic viscosity 
of the dispersion medium. 
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